Argon stock status announcement

Dear Granite Devices customers, we have temporarily ran out of Argon servo drives recently due to increased popularity (great!) and unfavorable variations in the production time (not so cool) occurring at the same time. A longer than usual production lead time is caused by limited stock availability of certain third party electric components. We have to wait until beginning of August to receive new 300 pcs delivery of Argon drives.

However, we have kept back a small number of Argons for emergency needs. If you need one very urgently and absolutely can’t wait for the delayed delivery, contact us by email at sales (at) granitedevices.fi. Those who have ordered the drive before the outage and are waiting over the unexpected delay will receive a 100 euro discount/refund per drive as compensation. Discounted orders are the ones made between the dates 13.6 and 25.6.

To reduce greatly the chance of outages in the future, we are starting to stock the most critical components in order reduce lead time variations.

Meanwhile all IONI series products are in stock and shipping normally. If you wish to change your order from ARGON to IONI, or make other changes to your order, please drop us email.

BL series servo motors are back

Due to popular demand, we brought BL series servo motors back in stock!

They have little bit different specifications than the earlier BL series motors. Now these motors are rated between 24 and 48 VDC which makes them ideal match with IONI drives. Also BL70 series motors have been upgraded from 4 000 CPR to 10 000 CPR encoders for smoother and stiffer operation.

Servo motor selection

Servo motor selection

IONICUBE 1X now available

The awaited IONICUBE 1X has been now released and available through the web shop! Also documentation is online in the Wiki.

IONICUBE 1X

IONICUBE 1X

On-board features include:

  • Carry single IONI drive
  • On-board regenerative braking resistor drive (need just an external resistor)
  • Support mechanical end-of-travel switches and homing switch
  • Motor holding brake output with driver
  • 20 pin ribbon cable connector for I/O and setpoint signals
  • Support 3.3V, 5V and 24V1 I/O signal levels
  • Charge pump enable input for safety
  • E-stop switch input (safe torque off)
  • ARGON Servo Drive and IONICUBE (4 axis) compatible encoder connector pin-out
  • RJ45 connectors for SimpleMotion V2 usage and configuration
  • On-board 0.5A 5V regulator to power drive logic and feedback devices
  • DIN rail mounting option

Granity for Linux

Granity configuration software has been successfully compiled on LinuxCNC distribution and works without any issues (except the default screen resolution being quite low :). The plan is to include pre-compiled Granity for Linux in the future releases.

Granity running on LinuxCNC distribution

Granity running on LinuxCNC 2.6 distribution

In other news, Granity 1.8 is coming soon with Argon support. Same time the Argon firmware version 2.0 will be introduced.

SinCos encoder support in IONI Pro

The new IONI firmware version has been released! It adds long awaited SinCos encoder support to the drive.

See the video below as comparison of SinCos and incremental encoder. The main advantages of SinCos are: silent (no dither), more stiffness and more precision. The only drawbacks are the availability and price of such encoders.

The other added features include application specific functionality for torque mode. This includes rotation limit (added safety) and torque setpoint scaling by analog input. These may be useful especially for OpenSimWheel project builders.

SinCos encoder support

Last days we have been working on supporting SinCos encoders. SinCos encoder is exactly like standard incremental encoder, except it has sinusoidal analog outputs instead of digital quadrature waveforms.

SinCos encoder signals vs digital incremental encoder signals

SinCos encoder signals vs digital incremental encoder signals

The beauty of this is that the analog waveform can provide infinite position resolution when the phase angle of signals are calculated. The latest prototype firmware of IONI Pro now supports SinCos interpolation which increases the resolution that we would get from digital counting by the factor of 16, 64 or 256 times. I.e. a 1000 pulse (or cycle) per revolution analog encoder with 256X interpolation yields resolution equal to 256 000 quadrature pulses per revolution (PPR) or 1 024 000 counts/per revolution (actual position resolution of motor).

SinCos encoder interpolation: the first graph shows position counter in digital mode, the middle shows interpolated angle from sine and cosine signals and the last image shows the combination of these two.

SinCos encoder interpolation: the first graph shows position counter in digital mode, the middle shows interpolated angle from sine and cosine signals and the last image shows the combination of these two to form the high resolution position count.

Very high resolution helps especially to make motion smoother, quieter and stiffer. The initial tests show amazing smooth performance of the motor in velocity and position modes. There was no dithering or groaning noise from the motor and at same time the motor position holding stiffness was jaw dropping. It felt like the motor was physically jammed as the eye, hand or ear can’t notice any movement.

CNC router test with IONI Pro

During Easter weekend I was testing IONI on my own DIY CNC router. Steppers ran above 2000 rpm making the machine run faster than it ever has.

IONI has native resolution of 25600 steps/rev (or 128 fold microstepping), which may lead to insufficient step rate from the CNC controller. In my case the LinuxCNC was able to generate only 33 kHz step rate, so step mutliplier in drive has been cranked up to 25x. This normally would reduce microstepping and cause noisy operation, but not with IONI when setpoint smoothing feature is turned on. At 0:32 you will see a comparison between setpoint smoothing off and on.

Special thanks to Aki for video editing!

IONI now measures motor resistance and inductance

IONI drive firmware release 1.1.0 brings a new useful feature that automatically measures motor characteristic resistance and inductance and completely takes the guesswork out of torque controller tuning.

Now it takes single click to auto-set resistance and inductance

It takes single click to auto-set resistance and inductance

The equation that defines inductor

The definition of inductance

Using automatic measure is the new recommended approach to set MR and ML parameters accurately even when motor data sheet would provide these values. This is because many data sheets unfortunately provide inaccurate values. Some manufacturers have apparently characterized motor inductance at high frequency range (hundreds of kHz) which typically gives a value more than 50% off from the real inductance.

Having accurate values also opens doors for sophisticated stepping motor control features such as advanced vibration damping which rely on accurate motor characteristics. This is a subject for another update!